Taking a closer look at Quantum gates and their operations


This post is a continuation of my earlier post ‘Exploring Quantum gate operations with QCSimulator’. Here I take a closer look at more quantum gates and their operations, besides implementing these new gates in my Quantum Computing simulator, the  QCSimulator in R.

Disclaimer: This article represents the author’s viewpoint only and doesn’t necessarily represent IBM’s positions, strategies or opinions

In  quantum circuits, gates  are unitary matrices which operate on 1,2 or 3 qubit systems which are represented as below

1 qubit
|0> = \begin{pmatrix}1\\0\end{pmatrix} and |1> = \begin{pmatrix}0\\1\end{pmatrix}

2 qubits
|0> \otimes |0> = \begin{pmatrix}1\\ 0\\ 0\\0\end{pmatrix}
|0> \otimes |1> = \begin{pmatrix}0\\ 1\\ 0\\0\end{pmatrix}
|1> \otimes |o> = \begin{pmatrix}0\\ 0\\ 1\\0\end{pmatrix}
|1> \otimes |1> = \begin{pmatrix}0\\ 0\\ 0\\1\end{pmatrix}

3 qubits
|0> \otimes |0> \otimes |0> = \begin{pmatrix}1\\ 0\\0\\ 0\\ 0\\0\\ 0\\0\end{pmatrix}
|0> \otimes |0> \otimes |1> = \begin{pmatrix}0\\ 1\\0\\ 0\\ 0\\0\\ 0\\0\end{pmatrix}
|0> \otimes |1> \otimes |0> = \begin{pmatrix}0\\ 0\\1\\ 0\\ 0\\0\\ 0\\0\end{pmatrix}


|1> \otimes |1> \otimes |1> = \begin{pmatrix}0\\ 0\\0\\ 0\\ 0\\0\\ 0\\1\end{pmatrix}
Hence single qubit is represented as 2 x 1 matrix, 2 qubit as 4 x 1 matrix and 3 qubit as 8 x 1 matrix

1) Composing Quantum gates in series
When quantum gates are connected in a series. The overall effect of the these quantum gates in series is obtained my taking the dot product of the unitary gates in reverse. For e.g.
Untitled

In the following picture the effect of the quantum gates A,B,C is the dot product of the gates taken reverse order
result = C . B . A

This overall action of the 3 quantum gates can be represented by a single ‘transfer’ matrix which is the dot product of the gates
Untitled

If we had a Pauli X followed by a Hadamard gate the combined effect of these gates on the inputs can be deduced by constructing a truth table

Input Pauli X – Output A’ Hadamard – Output B
|0> |1> 1/√2(|0>  – |1>)
|1> |0> 1/√2(|0>  + |1>)

Or

|0> -> 1/√2(|0>  – |1>)
|1> -> 1/√2(|0>  + |1>)
which is
\begin{pmatrix}1\\0\end{pmatrix}  ->1/√2 \begin{pmatrix}1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix} = 1/√2  \begin{pmatrix}1\\-1\end{pmatrix}
\begin{pmatrix}0\\1\end{pmatrix}  ->1/√2 \begin{pmatrix}1\\0\end{pmatrix} + \begin{pmatrix}0\\1\end{pmatrix} = 1/√2  \begin{pmatrix}1\\1\end{pmatrix}
Therefore the ‘transfer’ matrix can be written as
T = 1/√2 \begin{pmatrix}1 & 1\\ -1 & 1\end{pmatrix}

2)Quantum gates in parallel
When quantum gates are in parallel then the composite effect of the gates can be obtained by taking the tensor product of the quantum gates.
Untitled

If we consider the combined action of a Pauli X gate and a Hadamard gate in parallel
Untitled

A B A’ B’
|0> |0> |1> 1/√2(|0>  + |1>)
|0> |1> |1> 1/√2(|0>  – |1>)
|1> |0> |0> 1/√2(|0>  + |1>)
|1> |1> |0> 1/√2(|0>  – |1>)

Or

|00> => |1> \otimes 1/√2(|0>  + |1>) = 1/√2 (|10> + |11>)
|01> => |1> \otimes 1/√2(|0>  – |1>) = 1/√2 (|10> – |11>)
|10> => |0> \otimes 1/√2(|0>  + |1>) = 1/√2 (|00> + |01>)
|11> => |0> \otimes 1/√2(|0>  – |1>) = 1/√2 (|10> – |11>)

|00> = \begin{pmatrix}1\\ 0\\ 0\\0\end{pmatrix} =>1/√2\begin{pmatrix} 0\\ 0\\ 1\\ 1\end{pmatrix}
|01> = \begin{pmatrix}0\\ 1\\ 0\\0\end{pmatrix} =>1/√2\begin{pmatrix} 0\\ 0\\ 1\\ -1\end{pmatrix}
|10> = \begin{pmatrix}0\\ 0\\ 1\\0\end{pmatrix} =>1/√2\begin{pmatrix} 1\\ 0\\ 1\\ -1\end{pmatrix}
|11> = \begin{pmatrix}0\\ 0\\ 0\\1\end{pmatrix} =>1/√2\begin{pmatrix} 1\\ 0\\ -1\\ -1\end{pmatrix}

Here are more Quantum gates
a) Rotation gate
U = \begin{pmatrix}cos\theta & -sin\theta\\ sin\theta & cos\theta\end{pmatrix}

b) Toffoli gate
The Toffoli gate flips the 3rd qubit if the 1st and 2nd qubit are |1>

Toffoli gate
Input Output
|000> |000>
|001> |001>
|010> |010>
|011> |011>
|100> |100>
|101> |101>
|110> |111>
|111> |110>

c) Fredkin gate
The Fredkin gate swaps the 2nd and 3rd qubits if the 1st qubit is |1>

Fredkin gate
Input Output
|000> |000>
|001> |001>
|010> |010>
|011> |011>
|100> |100>
|101> |110>
|110> |101>
|111> |111>

d) Controlled U gate
A controlled U gate can be represented as
controlled U = \begin{pmatrix}1 & 0 & 0 & 0\\ 0 &1  &0  & 0\\ 0 &0  &u11  &u12 \\ 0 & 0 &u21  &u22 \end{pmatrix}   – (A)
where U =  \begin{pmatrix}u11 &u12 \\ u21 & u22\end{pmatrix}

e) Controlled Pauli gates
Controlled Pauli gates are created based on the following identities. The CNOT gate is a controlled Pauli X gate where controlled U is a Pauli X gate and matches the CNOT unitary matrix. Pauli gates can be constructed using

a) H x X x H = Z    &
H x H = I

b) S x X x S1
S x S1 = I

the controlled Pauli X, Y , Z are contructed using the CNOT for the controlled X in the above identities
In general a controlled Pauli gate can be created as below
Untitled

f) CPauliX
Here C is the 2 x2  Identity matrix. Simulating this in my QCSimulator
CPauliX I=matrix(c(1,0,0,1),nrow=2,ncol=2)
# Compute 1st composite
a = TensorProd(I,I)
b = CNOT2_01(a)
# Compute 1st composite
c = TensorProd(I,I)
#Take dot product
d = DotProduct(c,b)
#Take dot product with qubit
e = DotProduct(d,q)
e
}

Implementing the above with I, S, H gives Pauli X, Y and Z as seen below

library(QCSimulator)
I4=matrix(c(1,0,0,0,
            0,1,0,0,
            0,0,1,0,
            0,0,0,1),nrow=4,ncol=4)

#Controlled Pauli X
CPauliX(I4)
##      [,1] [,2] [,3] [,4]
## [1,]    1    0    0    0
## [2,]    0    1    0    0
## [3,]    0    0    0    1
## [4,]    0    0    1    0
#Controlled Pauli Y
CPauliY(I4)
##      [,1] [,2] [,3] [,4]
## [1,] 1+0i 0+0i 0+0i 0+0i
## [2,] 0+0i 1+0i 0+0i 0+0i
## [3,] 0+0i 0+0i 0+0i 0-1i
## [4,] 0+0i 0+0i 0+1i 0+0i
#Controlled Pauli Z
CPauliZ(I4)
##      [,1] [,2] [,3] [,4]
## [1,]    1    0    0    0
## [2,]    0    1    0    0
## [3,]    0    0    1    0
## [4,]    0    0    0   -1

g) CSWAP gate

Untitled

q00=matrix(c(1,0,0,0),nrow=4,ncol=1)
q01=matrix(c(0,1,0,0),nrow=4,ncol=1)
q10=matrix(c(0,0,1,0),nrow=4,ncol=1)
q11=matrix(c(0,0,0,1),nrow=4,ncol=1)
CSWAP(q00)
##      [,1]
## [1,]    1
## [2,]    0
## [3,]    0
## [4,]    0
#Swap qubits 
CSWAP(q01)
##      [,1]
## [1,]    0
## [2,]    0
## [3,]    1
## [4,]    0
#Swap qubits 
CSWAP(q10)
##      [,1]
## [1,]    0
## [2,]    1
## [3,]    0
## [4,]    0
CSWAP(q11)
##      [,1]
## [1,]    0
## [2,]    0
## [3,]    0
## [4,]    1

h) Toffoli state
The Toffoli state creates a 3 qubit entangled state 1/2(|000> + |001> + |100> + |111>)
Untitled

Simulating the Toffoli state in IBM Quantum Experience we get
Untitled

h) Implementation of Toffoli state in QCSimulator 

#ToffoliState 
    # Computation of the Toffoli State
    H=1/sqrt(2) * matrix(c(1,1,1,-1),nrow=2,ncol=2)
    I=matrix(c(1,0,0,1),nrow=2,ncol=2)

    # 1st composite
    # H x H x H
    a = TensorProd(TensorProd(H,H),H)
    # 1st CNOT
    a1= CNOT3_12(a)

    # 2nd composite
    # I x I x T1Gate
    b = TensorProd(TensorProd(I,I),T1Gate(I))
    b1 = DotProduct(b,a1)
    c = CNOT3_02(b1)

    # 3rd composite
    # I x I x TGate
    d = TensorProd(TensorProd(I,I),TGate(I))
    d1 = DotProduct(d,c)
    e = CNOT3_12(d1)

    # 4th composite
    # I x I x T1Gate
    f = TensorProd(TensorProd(I,I),T1Gate(I))
    f1 = DotProduct(f,e)
    g = CNOT3_02(f1)

    #5th composite
    # I x T x T
    h = TensorProd(TensorProd(I,TGate(I)),TGate(I))
    h1 = DotProduct(h,g)
    i = CNOT3_12(h1)

    #6th composite
    # I x H x H
    j = TensorProd(TensorProd(I,Hadamard(I)),Hadamard(I))
    j1 = DotProduct(j,i)
    k = CNOT3_12(j1)

    # 7th composite
    # I x H x H
    l = TensorProd(TensorProd(I,Hadamard(I)),Hadamard(I))
    l1 = DotProduct(l,k)
    m = CNOT3_12(l1)
    n = CNOT3_02(m)

    #8th composite
    # T x H x T1
    o = TensorProd(TensorProd(TGate(I),Hadamard(I)),T1Gate(I))
    o1 = DotProduct(o,n)
    p = CNOT3_02(o1)
    result = measurement(p)
    plotMeasurement(result)

a-1
The measurement is identical to the that of IBM Quantum Experience

Conclusion:  This post looked at more Quantum gates. I have implemented all the gates in my QCSimulator which I hope to release in a couple of months.

Disclaimer: This article represents the author’s viewpoint only and doesn’t necessarily represent IBM’s positions, strategies or opinions

References
1. http://www1.gantep.edu.tr/~koc/qc/chapter4.pdf
2. http://iontrap.umd.edu/wp-content/uploads/2016/01/Quantum-Gates-c2.pdf
3. https://quantumexperience.ng.bluemix.net/

Also see
1.  Venturing into IBM’s Quantum Experience
2. Going deeper into IBM’s Quantum Experience!
3.  A primer on Qubits, Quantum gates and Quantum Operations
4. Exploring Quantum gate operations with QCSimulator

Take a look at my other posts at
1. Index of posts

Advertisements

One thought on “Taking a closer look at Quantum gates and their operations

  1. Pingback: Introducing QCSimulator: A 5-qubit quantum computing simulator in R | Giga thoughts …

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s