yorkr crashes the IPL party! – Part 2


Most people say that it is the intellect which makes a great scientist. They are wrong: it is character.

                 Albert Einstein

*Science is organized knowledge. Wisdom is organized life.“*

                 Immanuel Kant

If I have seen further, it is by standing on the shoulders of giants

                 Isaac Newton
                 

Valid criticism does you a favor.

                 Carl Sagan

Introduction

In this post, my R package ‘yorkr’, continues to bat in the IPL Twenty20s. This post is a continuation of my earlier post – yorkr crashes the IPL party ! – Part 1. This post deals with Class 2 functions namely the performances of an IPL team in all T20 matches against another IPL team for e.g all T20 matches of Chennai Super Kings vs Royal Challengers Bangalore or Kochi Tuskers Kerala vs Mumbai Indians etc.

You can clone/fork the code for my package yorkr from Github at yorkr

This post has also been published at RPubs IPLT20-Part2 and can also be downloaded as a PDF document from IPLT20-Part2.pdf

Check out my 2 books on cricket, a) Cricket analytics with cricketr b) Beaten by sheer pace – Cricket analytics with yorkr, now available in both paperback & kindle versions on Amazon!!! Pick up your copies today!

Checkout my interactive Shiny apps GooglyPlus (plots & tables) and Googly (only plots) which can be used to analyze IPL players, teams and matches.

The list of function in Class 2 are

  1. teamBatsmenPartnershiOppnAllMatches()
  2. teamBatsmenPartnershipOppnAllMatchesChart()
  3. teamBatsmenVsBowlersOppnAllMatches()
  4. teamBattingScorecardOppnAllMatches()
  5. teamBowlingPerfOppnAllMatches()
  6. teamBowlersWicketsOppnAllMatches()
  7. teamBowlersVsBatsmenOppnAllMatches()
  8. teamBowlersWicketKindOppnAllMatches()
  9. teamBowlersWicketRunsOppnAllMatches()
  10. plotWinLossBetweenTeams()

1. Install the package from CRAN

library(yorkr)
rm(list=ls())

2. Get data for all T20 matches between 2 teams

We can get all IPL T20 matches between any 2 teams using the function below. The dir parameter should point to the folder which has the IPL T20 RData files of the individual matches. This function creates a data frame of all the IPL T20 matches and also saves the dataframe as RData. The function below gets all matches between India and Australia

setwd("C:/software/cricket-package/york-test/yorkrData/IPL/IPL-T20-matches")
matches <- getAllMatchesBetweenTeams("Sunrisers Hyderabad","Royal Challengers Bangalore",dir=".")
dim(matches)
## [1] 1320   25

I have however already saved the IPL Twenty20 matches for all possible combinations of opposing IPL Teams. The data for these matches for the individual teams/countries can be obtained from Github at in the folder IPL-T20-allmatches-between-two-teams

Note: You will need to use the function below for future matches! The data in Cricsheet are from 2008 -2015

3. Save data for all matches between all combination of 2 teams

This can be done locally using the function below. You could use this function to combine all IPL Twenty20 matches between any 2 IPL teams into a single dataframe and save it in the current folder. The current implementation expects that the the RData files of individual matches are in ../data folder. Since I already have converted this I will not be running this again

# Available in yorkr_0.0.5. Can be installed from Github though!
#saveAllMatchesBetween2IPLTeams()

4. Load data directly for all matches between 2 IPL teams

As in my earlier post I pick all IPL Twenty20 matches between 2 random IPL teams. I load the data directly from the stored RData files. When we load the Rdata file a “matches” object will be created. This object can be stored for the apporpriate teams as below

# Load T20 matches between 2 IPL teams
setwd("C:/software/cricket-package/york-test/yorkrData/IPL/IPL-T20-allmatches-between-two-teams")
load("Chennai Super Kings-Delhi Daredevils-allMatches.RData")
csk_dd_matches <- matches
load("Deccan Chargers-Kolkata Knight Riders-allMatches.RData")
dc_kkr_matches <- matches
load("Mumbai Indians-Pune Warriors-allMatches.RData")
mi_pw_matches <- matches
load("Rajasthan Royals-Sunrisers Hyderabad-allMatches.RData")
rr_sh_matches <- matches
load("Kings XI Punjab-Royal Challengers Bangalore-allMatches.RData")
kxip_rcb_matches <-matches
load("Chennai Super Kings-Kochi Tuskers Kerala-allMatches.RData")
csk_ktk_matches <-matches

5. Team Batsmen partnership in Twenty20 (all matches with opposing IPL team)

This function will create a report of the batting partnerships in the IPL teams for the matches between the teams. The report can be brief or detailed depending on the parameter ‘report’. As can be seen M S Dhoni tops the list for CSK, followed by Raina and then Murali Vijay for matches against Delhi Daredevils. For the Delhi Daredevils it is V Sehawag followed by Gambhir.

m<- teamBatsmenPartnershiOppnAllMatches(csk_dd_matches,'Chennai Super Kings',report="summary")
m
## Source: local data frame [29 x 2]
## 
##         batsman totalRuns
##          (fctr)     (dbl)
## 1      MS Dhoni       364
## 2      SK Raina       335
## 3       M Vijay       290
## 4   S Badrinath       185
## 5     ML Hayden       181
## 6    MEK Hussey       169
## 7  F du Plessis       100
## 8      S Vidyut        94
## 9      DR Smith        81
## 10    JA Morkel        80
## ..          ...       ...
m<- teamBatsmenPartnershiOppnAllMatches(csk_dd_matches,'Delhi Daredevils',report="summary")
m
## Source: local data frame [53 x 2]
## 
##             batsman totalRuns
##              (fctr)     (dbl)
## 1          V Sehwag       233
## 2         G Gambhir       200
## 3         DA Warner       134
## 4    AB de Villiers       133
## 5        KD Karthik       129
## 6  DPMD Jayawardene        89
## 7         JA Morkel        81
## 8        TM Dilshan        79
## 9          S Dhawan        78
## 10          SS Iyer        77
## ..              ...       ...
m <-teamBatsmenPartnershiOppnAllMatches(dc_kkr_matches,'Deccan Chargers',report="summary")
m
## Source: local data frame [29 x 2]
## 
##            batsman totalRuns
##             (fctr)     (dbl)
## 1     AC Gilchrist       166
## 2         HH Gibbs       145
## 3        RG Sharma       116
## 4         S Dhawan       111
## 5        A Symonds       100
## 6  Y Venugopal Rao        92
## 7         B Chipli        60
## 8     DB Ravi Teja        54
## 9         TL Suman        53
## 10      VVS Laxman        32
## ..             ...       ...
m <-teamBatsmenPartnershiOppnAllMatches(mi_pw_matches,'Mumbai Indians',report="detailed")
m[1:30,]
##         batsman   nonStriker partnershipRuns totalRuns
## 1  SR Tendulkar JEC Franklin              24       152
## 2  SR Tendulkar    AT Rayudu              46       152
## 3  SR Tendulkar    RG Sharma               2       152
## 4  SR Tendulkar   KD Karthik              20       152
## 5  SR Tendulkar   RT Ponting              39       152
## 6  SR Tendulkar  AC Blizzard              12       152
## 7  SR Tendulkar  RJ Peterson               9       152
## 8     RG Sharma SR Tendulkar               3       135
## 9     RG Sharma JEC Franklin               0       135
## 10    RG Sharma    AT Rayudu              34       135
## 11    RG Sharma    A Symonds              19       135
## 12    RG Sharma   KD Karthik              19       135
## 13    RG Sharma   KA Pollard              47       135
## 14    RG Sharma     TL Suman               7       135
## 15    RG Sharma   GJ Maxwell               6       135
## 16   KD Karthik SR Tendulkar               8       108
## 17   KD Karthik JEC Franklin              32       108
## 18   KD Karthik    AT Rayudu               3       108
## 19   KD Karthik    RG Sharma              50       108
## 20   KD Karthik   SL Malinga              10       108
## 21   KD Karthik      PP Ojha               0       108
## 22   KD Karthik  RJ Peterson               4       108
## 23   KD Karthik  NLTC Perera               1       108
## 24    AT Rayudu SR Tendulkar              54        92
## 25    AT Rayudu    RG Sharma              37        92
## 26    AT Rayudu   KD Karthik               1        92
## 27 JEC Franklin SR Tendulkar              31        63
## 28 JEC Franklin    RG Sharma               1        63
## 29 JEC Franklin   KD Karthik              15        63
## 30 JEC Franklin     SA Yadav              10        63
m <-teamBatsmenPartnershiOppnAllMatches(rr_sh_matches,'Sunrisers Hyderabad',report="summary")
m
## Source: local data frame [23 x 2]
## 
##         batsman totalRuns
##          (fctr)     (dbl)
## 1      S Dhawan       168
## 2     DJG Sammy        95
## 3    EJG Morgan        90
## 4     DA Warner        83
## 5       NV Ojha        50
## 6      KL Rahul        40
## 7     RS Bopara        40
## 8      DW Steyn        31
## 9      CL White        31
## 10 MC Henriques        29
## ..          ...       ...
m <-teamBatsmenPartnershiOppnAllMatches(kxip_rcb_matches,'Kings XI Punjab',report="summary")
m
## Source: local data frame [47 x 2]
## 
##          batsman totalRuns
##           (fctr)     (dbl)
## 1       SE Marsh       246
## 2      DA Miller       224
## 3      RS Bopara       203
## 4   AC Gilchrist       191
## 5   Yuvraj Singh       126
## 6       MS Bisla       103
## 7  Mandeep Singh       100
## 8      DJ Hussey        99
## 9  Azhar Mahmood        96
## 10 KC Sangakkara        88
## ..           ...       ...
m <-teamBatsmenPartnershiOppnAllMatches(csk_ktk_matches,'Kochi Tuskers Kerala',report="summary")
m
## Source: local data frame [8 x 2]
## 
##            batsman totalRuns
##             (fctr)     (dbl)
## 1      BB McCullum        80
## 2         BJ Hodge        70
## 3         PA Patel        40
## 4        RA Jadeja        35
## 5 Y Gnaneswara Rao        19
## 6 DPMD Jayawardene        16
## 7          OA Shah         3
## 8        KM Jadhav         1

6. Team batsmen partnership in Twenty20 (all matches with opposing IPL team)

This is plotted graphically in the charts below. The partnerships are shown. Note: All functions which create a plot also include a parameter plot=TRUE/FALSE. If you set this as FALSE then a data frame is returned. You can use the dataframe to create an interactive plot for the partnerships (mouse over) using packages like plotly,rcharts, googleVis or ggvis.

teamBatsmenPartnershipOppnAllMatchesChart(csk_dd_matches,'Chennai Super Kings',"Delhi Daredevils")

teamBatsmenPartnership-1

teamBatsmenPartnershipOppnAllMatchesChart(dc_kkr_matches,main="Kolkata Knight Riders",opposition="Deccan Chargers")

teamBatsmenPartnership-2

teamBatsmenPartnershipOppnAllMatchesChart(kxip_rcb_matches,"Royal Challengers Bangalore",opposition="Kings XI Punjab")

teamBatsmenPartnership-3

teamBatsmenPartnershipOppnAllMatchesChart(mi_pw_matches,"Mumbai Indians","Pune Warriors")

teamBatsmenPartnership-4

m <- teamBatsmenPartnershipOppnAllMatchesChart(rr_sh_matches,"Rajasthan Royals","Sunrisers Hyderabad",plot=FALSE)
m[1:30,]
##        batsman  nonStriker runs
## 1    SR Watson   STR Binny   60
## 2    AM Rahane   STR Binny   59
## 3    STR Binny   AM Rahane   45
## 4    SR Watson    R Dravid   42
## 5    AM Rahane   SV Samson   41
## 6     BJ Hodge   SV Samson   36
## 7    CH Morris   STR Binny   34
## 8    AM Rahane   SR Watson   31
## 9     R Dravid   SR Watson   30
## 10   SV Samson   AM Rahane   29
## 11   SR Watson   AM Rahane   27
## 12   SPD Smith    DJ Hooda   25
## 13   SPD Smith JP Faulkner   24
## 14   SPD Smith   STR Binny   20
## 15    R Dravid   AM Rahane   18
## 16    BJ Hodge JP Faulkner   18
## 17 JP Faulkner   SPD Smith   18
## 18   SV Samson     KK Nair   14
## 19 JP Faulkner   STR Binny   14
## 20   SV Samson   STR Binny   13
## 21   SPD Smith   AM Rahane   13
## 22   SR Watson   SPD Smith   12
## 23   STR Binny JP Faulkner   12
## 24   STR Binny   SPD Smith   12
## 25 JP Faulkner   SV Samson   12
## 26     KK Nair   SV Samson   12
## 27 JP Faulkner    BJ Hodge   11
## 28   SPD Smith   SR Watson   10
## 29   STR Binny   SR Watson    9
## 30   SV Samson    BJ Hodge    9

7. Team batsmen versus bowler in Twenty20 (all matches with opposing IPL team)

The plots below provide information on how each of the top batsmen of the IPL teams fared against the opposition bowlers

# Adam Gilchrist was the top performer for Deccan Chargers
teamBatsmenVsBowlersOppnAllMatches(dc_kkr_matches,"Deccan Chargers","Kolkata Knight Riders")

batsmenvsBowler-1

teamBatsmenVsBowlersOppnAllMatches(csk_dd_matches,"Delhi Daredevils","Chennai Super Kings",top=3)

batsmenvsBowler-2

m <- teamBatsmenVsBowlersOppnAllMatches(csk_ktk_matches,"Chennai Super Kings","Kochi Tuskers Kerala",top=10,plot=FALSE)
m
## Source: local data frame [37 x 3]
## Groups: batsman [1]
## 
##     batsman         bowler  runs
##      (fctr)         (fctr) (dbl)
## 1  SK Raina       RP Singh     6
## 2  SK Raina    S Sreesanth    18
## 3  SK Raina M Muralitharan     1
## 4  SK Raina  R Vinay Kumar     4
## 5  SK Raina    NLTC Perera    11
## 6  SK Raina       RR Powar    13
## 7  SK Raina       RV Gomez    16
## 8   WP Saha       RP Singh    15
## 9   WP Saha M Muralitharan    11
## 10  WP Saha       BJ Hodge     1
## ..      ...            ...   ...
teamBatsmenVsBowlersOppnAllMatches(rr_sh_matches,"Sunrisers Hyderabad","Rajasthan Royals")

batsmenvsBowler-3

8. Team batsmen versus bowler in Twenty20(all matches with opposing IPL team)

The following tables gives the overall performances of the IPL team’s batsmen against the opposition.

#Chris Gayle followed by Virat Kohli tops for RCB
a <-teamBattingScorecardOppnAllMatches(kxip_rcb_matches,main="Royal Challengers Bangalore",opposition="Kings XI Punjab")
## Total= 2444
a
## Source: local data frame [55 x 5]
## 
##           batsman ballsPlayed fours sixes  runs
##            (fctr)       (int) (int) (int) (dbl)
## 1        CH Gayle         313    45    41   561
## 2         V Kohli         296    39     8   344
## 3  AB de Villiers         183    23    16   301
## 4       JH Kallis         133    18     7   187
## 5        R Dravid          90    11     1   105
## 6      RV Uthappa          47     7     6    92
## 7       CA Pujara          66    11    NA    70
## 8       MK Pandey          50     5     3    67
## 9    KP Pietersen          43     7     1    66
## 10     MV Boucher          36     4     1    41
## ..            ...         ...   ...   ...   ...
#Tendulkar & Rohit Sharma lead for Mumbai Indians
teamBattingScorecardOppnAllMatches(mi_pw_matches,"Mumbai Indians","Pune Warriors")
## Total= 756
## Source: local data frame [20 x 5]
## 
##            batsman ballsPlayed fours sixes  runs
##             (fctr)       (int) (int) (int) (dbl)
## 1     SR Tendulkar         134    21     1   152
## 2        RG Sharma         121     7     6   135
## 3       KD Karthik         107    10     3   108
## 4        AT Rayudu          93     8     1    92
## 5     JEC Franklin          70     5     2    63
## 6       KA Pollard          43     3     3    55
## 7         TL Suman          16     3     3    36
## 8  Harbhajan Singh          22     3     1    29
## 9       SL Malinga          16     2     1    19
## 10       A Symonds          18     2    NA    19
## 11      RT Ponting          17     2    NA    14
## 12      GJ Maxwell           7     1     1    13
## 13     RJ Peterson          13     1    NA    13
## 14     AC Blizzard           6     1    NA     6
## 15         PP Ojha           2    NA    NA     1
## 16        MM Patel           2    NA    NA     1
## 17         RE Levi           2    NA    NA     0
## 18        SA Yadav           4    NA    NA     0
## 19     NLTC Perera           4    NA    NA     0
## 20        DR Smith           1    NA    NA     0
teamBattingScorecardOppnAllMatches(mi_pw_matches,"Pune Warriors","Mumbai Indians")
## Total= 714
## Source: local data frame [28 x 5]
## 
##         batsman ballsPlayed fours sixes  runs
##          (fctr)       (int) (int) (int) (dbl)
## 1    RV Uthappa         131    13     4   151
## 2     MK Pandey          80     5     4    88
## 3  Yuvraj Singh          62     3     6    77
## 4      M Manhas          36     5    NA    42
## 5     SPD Smith          38     4    NA    41
## 6      MR Marsh          26     2     2    38
## 7      M Kartik          21     2     1    25
## 8      R Sharma          22     2     1    23
## 9      TL Suman          15     5    NA    23
## 10   WD Parnell          24     3    NA    22
## ..          ...         ...   ...   ...   ...
teamBattingScorecardOppnAllMatches(csk_dd_matches,"Delhi Daredevils","Chennai Super Kings")
## Total= 1983
## Source: local data frame [53 x 5]
## 
##             batsman ballsPlayed fours sixes  runs
##              (fctr)       (int) (int) (int) (dbl)
## 1          V Sehwag         147    27     9   233
## 2         G Gambhir         155    23     2   200
## 3         DA Warner         130    11     2   134
## 4    AB de Villiers          80     7     6   133
## 5        KD Karthik          99    15     1   129
## 6  DPMD Jayawardene          77     7     2    89
## 7         JA Morkel          63     8     2    81
## 8        TM Dilshan          65     8     3    79
## 9          S Dhawan          58     8     2    78
## 10          SS Iyer          56    11     1    77
## ..              ...         ...   ...   ...   ...
teamBattingScorecardOppnAllMatches(rr_sh_matches,"Rajasthan Royals","Sunrisers Hyderabad")
## Total= 808
## Source: local data frame [17 x 5]
## 
##          batsman ballsPlayed fours sixes  runs
##           (fctr)       (int) (int) (int) (dbl)
## 1      SR Watson          97    22     4   148
## 2      AM Rahane         145    17     1   148
## 3      SPD Smith          81    11     2   103
## 4      STR Binny          83     6     1    90
## 5      SV Samson          83     3     4    76
## 6    JP Faulkner          41     7     2    59
## 7       BJ Hodge          37     2     5    55
## 8       R Dravid          44     7     1    48
## 9      CH Morris          11     2     3    34
## 10       KK Nair          23     3    NA    17
## 11      R Bhatia          10     1    NA     8
## 12   DS Kulkarni           6     1    NA     7
## 13      DJ Hooda           9    NA    NA     7
## 14      AM Nayar           3     1    NA     4
## 15      PV Tambe           7    NA    NA     3
## 16 KW Richardson           2    NA    NA     1
## 17     DH Yagnik           4    NA    NA     0

9. Team performances of IPL bowlers (all matches with opposing IPL team)

Like the function above the following tables provide the top IPL bowlers of the respective teams in the matches against the opposition.

#Piyush Chawla has the most wickets for KXIP against RCB
teamBowlingPerfOppnAllMatches(kxip_rcb_matches,"Kings XI Punjab","Royal Challengers Bangalore")
## Source: local data frame [38 x 5]
## 
##            bowler overs maidens  runs wickets
##            (fctr) (int)   (int) (dbl)   (dbl)
## 1       PP Chawla    14       0   311      12
## 2       IK Pathan    12       0   159       9
## 3      YA Abdulla     9       1   103       8
## 4       RJ Harris     5       0    87       7
## 5         P Awana    11       0   149       6
## 6     S Sreesanth     6       0   101       5
## 7   Azhar Mahmood     8       0    74       5
## 8  Sandeep Sharma     8       1   101       4
## 9        AR Patel     5       0    94       4
## 10      VRV Singh     6       0    70       4
## ..            ...   ...     ...   ...     ...
#Ashwin is the highest wicket takes for CSK against DD
teamBowlingPerfOppnAllMatches(csk_dd_matches,main="Chennai Super Kings",opposition="Delhi Daredevils")
## Source: local data frame [26 x 5]
## 
##           bowler overs maidens  runs wickets
##           (fctr) (int)   (int) (dbl)   (dbl)
## 1       R Ashwin     9       0   233      17
## 2      JA Morkel    11       0   338      10
## 3       DJ Bravo     5       0   135       8
## 4      SB Jakati     4       0   140       6
## 5       L Balaji    10       0   117       6
## 6      MM Sharma     1       0    99       6
## 7      RA Jadeja     2       0    85       4
## 8      IC Pandey     1       0    80       4
## 9  BW Hilfenhaus     5       0    53       4
## 10       A Nehra     1       0    25       4
## ..           ...   ...     ...   ...     ...
teamBowlingPerfOppnAllMatches(dc_kkr_matches,"Deccan Chargers","Kolkata Knight Riders")
## Source: local data frame [26 x 5]
## 
##            bowler overs maidens  runs wickets
##            (fctr) (int)   (int) (dbl)   (dbl)
## 1        RP Singh    11       0   161       7
## 2         PP Ojha    11       0   196       6
## 3      WPUJC Vaas     4       0    67       5
## 4       A Symonds    12       0   100       4
## 5        DW Steyn     8       0    88       4
## 6        A Mishra     8       0    68       3
## 7  Jaskaran Singh     6       0    53       3
## 8       SB Styris     7       0    79       2
## 9       RJ Harris     4       0    20       2
## 10  Harmeet Singh    10       0    84       1
## ..            ...   ...     ...   ...     ...

10. Team bowler’s wickets in IPL Twenty20 (all matches with opposing IPL team)

This provided a graphical plot of the tables above

# Dirk Nannes and Umesh Yadav top for DD against CSK
teamBowlersWicketsOppnAllMatches(csk_dd_matches,"Delhi Daredevils","Chennai Superkings")

bowlerWicketsOppn-1

# SL Malinga and Munaf Patel lead in MI vs PW clashes
teamBowlersWicketsOppnAllMatches(mi_pw_matches,"Mumbai Indians","Pune Warrors")

bowlerWicketsOppn-2

teamBowlersWicketsOppnAllMatches(dc_kkr_matches,"Kolkata Knight Riders","Deccan Chargers",top=10) 

bowlerWicketsOppn-3

m <-teamBowlersWicketsOppnAllMatches(kxip_rcb_matches,"Royal Challengers Bangalore","Kings XI Punjab",plot=FALSE)
m
## Source: local data frame [20 x 2]
## 
##              bowler wickets
##              (fctr)   (int)
## 1         S Aravind       8
## 2            Z Khan       7
## 3          MA Starc       7
## 4          HV Patel       6
## 5           P Kumar       5
## 6         YS Chahal       5
## 7         JH Kallis       4
## 8     R Vinay Kumar       3
## 9          A Kumble       3
## 10         CH Gayle       3
## 11      AB McDonald       3
## 12         VR Aaron       3
## 13         DW Steyn       2
## 14    CK Langeveldt       2
## 15       DL Vettori       2
## 16         M Kartik       2
## 17 RE van der Merwe       2
## 18        R Rampaul       1
## 19        JA Morkel       1
## 20         AB Dinda       1

11. Team bowler vs batsmen in Twenty20(all matches with opposing IPL team)

These plots show how the IPL bowlers fared against the batsmen. It shows which of the opposing IPL teams batsmen were able to score the most runs

teamBowlersVsBatsmenOppnAllMatches(rr_sh_matches,'Rajasthan Royals',"Sunrisers Hyderabd",top=5)

bowlerVsBatsmen-1

teamBowlersVsBatsmenOppnAllMatches(kxip_rcb_matches,"Kings XI Punjab","Royal Challengers Bangalore",top=3)

bowlerVsBatsmen-2

teamBowlersVsBatsmenOppnAllMatches(dc_kkr_matches,"Deccan Chargers","Kolkata Knight Riders")

bowlerVsBatsmen-3

12. Team bowler’s wicket kind in Twenty20(caught,bowled,etc) (all matches with opposing IPL team)

The charts below show the wicket kind taken by the bowler of the IPL team(caught, bowled, lbw etc)

teamBowlersWicketKindOppnAllMatches(csk_dd_matches,"Delhi Daredevils","Chennai Super Kings",plot=TRUE)

bowlerWickets-1

m <- teamBowlersWicketKindOppnAllMatches(mi_pw_matches,"Pune Warriors","Mumbai Indians",plot=FALSE)
m[1:30,]
##          bowler wicketKind wicketPlayerOut runs
## 1       SB Wagh     caught    JEC Franklin   31
## 2      R Sharma     caught    SR Tendulkar   64
## 3     AC Thomas     caught       AT Rayudu   69
## 4      M Kartik    stumped         RE Levi   70
## 5      AB Dinda     caught       AT Rayudu  150
## 6      AB Dinda     caught       RG Sharma  150
## 7      M Kartik    stumped      KD Karthik   70
## 8    MN Samuels     bowled        SA Yadav   21
## 9      R Sharma     bowled      KA Pollard   64
## 10     AB Dinda     caught    JEC Franklin  150
## 11   WD Parnell     caught      SL Malinga   64
## 12     AB Dinda        lbw Harbhajan Singh  150
## 13 Yuvraj Singh     caught      RT Ponting   61
## 14     AJ Finch     caught    SR Tendulkar   11
## 15     MR Marsh        lbw      KD Karthik   24
## 16    AC Thomas     caught     AC Blizzard   69
## 17 Yuvraj Singh     caught    SR Tendulkar   61
## 18 Yuvraj Singh     caught       AT Rayudu   61
## 19     R Sharma     caught       RG Sharma   64
## 20     R Sharma     caught        TL Suman   64
## 21    JE Taylor     caught       A Symonds   34
## 22    JE Taylor     caught      KA Pollard   34
## 23      B Kumar     caught    JEC Franklin   50
## 24    MJ Clarke    run out       RG Sharma    9
## 25      A Nehra     caught    SR Tendulkar   19
## 26      A Nehra     caught     RJ Peterson   19
## 27      B Kumar     bowled       AT Rayudu   50
## 28      A Nehra    run out     NLTC Perera   19
## 29     AB Dinda     caught Harbhajan Singh  150
## 30   WD Parnell    run out      SL Malinga   64
teamBowlersWicketKindOppnAllMatches(dc_kkr_matches,"Kolkata Knight Riders",'Deccan Chargers',plot=TRUE)

bowlerWickets-2

13. Team bowler’s wicket taken and runs conceded in Twenty20(all matches with opposing IPL team)

teamBowlersWicketRunsOppnAllMatches(csk_ktk_matches,"Kochi Tuskers Kerala","Chennai Super Kings")

wicketRuns-1

m <-teamBowlersWicketRunsOppnAllMatches(mi_pw_matches,"Mumbai Indians","Pune Warriors",plot=FALSE)
m[1:30,]
## Source: local data frame [30 x 5]
## 
##             bowler overs maidens  runs wickets
##             (fctr) (int)   (int) (dbl)   (dbl)
## 1       AG Murtaza     4       0    18       2
## 2       SL Malinga     9       1   143      10
## 3         AN Ahmed     5       0    40       4
## 4         MM Patel     6       1    88       7
## 5       KA Pollard     6       0    99       5
## 6     JEC Franklin     4       0    64       1
## 7  Harbhajan Singh     7       0    85       6
## 8          PP Ojha     8       0    95       4
## 9       MG Johnson     5       0    41       4
## 10        R Dhawan     1       0    27       0
## ..             ...   ...     ...   ...     ...

14. Plot of wins vs losses between teams in IPL T20 confrontations

setwd("C:/software/cricket-package/york-test/yorkrData/IPL/IPL-T20-matches")
plotWinLossBetweenTeams("Chennai Super Kings","Delhi Daredevils")

winsLosses-1

plotWinLossBetweenTeams("Deccan Chargers","Kolkata Knight Riders",".")

winsLosses-2

plotWinLossBetweenTeams('Kings XI Punjab',"Royal Challengers Bangalore",".")

winsLosses-3

plotWinLossBetweenTeams("Mumbai Indians","Pune Warriors",".")

winsLosses-4

plotWinLossBetweenTeams('Rajasthan Royals',"Sunrisers Hyderabad",".")

winsLosses-5

plotWinLossBetweenTeams('Chennai Super Kings',"Mumbai Indians",".")

winsLosses-6

Conclusion

This post included all functions for all IPL Twenty20 matches between any 2 IPL teams. As before the data frames are already available. You can load the data and begin to use them. If more insights from the dataframe are possible do go ahead. But please do attribute the source to Cricheet (http://cricsheet.org), my package yorkr and my blog. Do give the functions a spin for yourself!

You may also like

  1. yorkr pads up for the Twenty20s: Part 1- Analyzing team“s match performance
  2. yorkr pads up for the Twenty20s:Part 4- Individual batting and bowling performances
  3. Introducing cricket package yorkr: Part 2-Trapped leg before wicket!
  4. Introducing cricket package yorkr:Part 4-In the block hole!
  5. Introducing cricketr! : An R package to analyze performances of cricketers
  6. Cricket analytics with cricketr
  7. OpenCV: Fun with filters and convolution
  8. To Hadoop, or not to Hadoop
  9. Close encounters with the future
  10. Presentation on ‘Evolution to LTE’
Advertisements

4 thoughts on “yorkr crashes the IPL party! – Part 2

  1. Pingback: yorkr crashes the IPL party! – Part 2 – Mubashir Qasim

  2. Pingback: yorkr crashes the IPL party! – Part 3! | Giga thoughts …

  3. Pingback: yorkr crashes the IPL party! – Part 4 | Giga thoughts …

  4. Pingback: yorkr is generic! | Giga thoughts …

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s