The Next Frontier

Published in Telecom Asia – The next frontier, 21, Mar, 2012

In his classic book “The Innovator’s Dilemma” Prof. Clayton Christensen of Harvard Business School presents several compelling cases of great organizations that fail because they did not address disruptive technologies, occurring in the periphery, with the unique mindset required in managing these disruptions.

In the book the author claims that when these disruptive technologies appeared on the horizon there were few takers for these technologies because there were no immediate applications for them. For e.g. when the hydraulic excavator appeared its performance was inferior to the existing predominant manual excavator. But in course of time the technology behind hydraulic excavators improved significantly to displace existing technologies. Similarly the appearance of 3.5 inch disk had no immediate takers in desktop computers but made its way to the laptop.

Similarly the mini computer giant Digital Equipment Corporation (DEC) ignored the advent of the PC era and focused all its attention on making more powerful mini-computers. This led to the ultimate demise of DEC and several other organizations in this space. This book includes several such examples of organizations that went defunct because disruptive technologies ended up cannibalizing established technologies.

In the last couple of months we have seen technology trends pouring in.  It is now accepted that cloud computing, mobile broadband, social networks, big data, LTE, Smart Grids, and Internet of Things will be key players in the world of our future. We are now at a point in time when serious disruption is not just possible but seems extremely likely. The IT Market Research firm IDC in its Directions 2012 believes that we are in the cusp of a Third Platform that will dominate the IT landscape.

There are several technologies that have been appearing on the periphery and have only gleaned marginal interest for e.g. Super Wi-Fi or Whitespaces which uses unlicensed spectrum to access larger distances of up to 100 kms. Whitespaces has been trialed by a few companies in the last year. Another interesting technology is WiMAX which provides speeds of 40 Mbps for distances of up to 50 km. WiMAX’s deployment has been spotty and has not led to widespread adoption in comparison to its apparent competitor LTE.

In the light of the technology entrants, the disruption in the near future may occur because of a paradigm shift which I would like to refer as the “Neighborhood Area Computing (NAC)” paradigm.  It appears that technology will veer towards neighborhood computing given the bandwidth congestion issues of WAN. A neighborhood area network (NAN) will supplant the WAN for networks which address a community in a smaller geographical area

This will lead to three main trends

Neighborhood Area Networks (NAN):  Major improvements in Neighborhood Area Networks (NAN) are inevitable given the rising importance of smart grids and M2M technology in the context of WAN latencies. Residential homes of the future will have a Home Area Network (HAN) based on bluetooth or Zigbee protocols connecting all electrical appliances. In a smart grid contextNAN provides the connectivity between the Home Area Network (HAN) of a future Smart Home with the WAN network. While it is possible that the utility HAN network will be separate from the IP access network of the residential subscriber, the more likely possibility is that the HAN will be a subnet within the home network and will connect toNAN network.

The data generated from smart grids, m2m networks and mobile broadband will need to be stored and processed immediately through big data analytics on a neighborhood datacenter. Shorter range technologies like WiMAX, Super WiFi/ Whitespaces will transport the data to a neighborhood cloud on which a Hadoop based Big Data analytics will provide real time analytics

Death of the Personal Computer:  The PC/laptop will soon give way to a cloud based computing platform similar to Google’s Chrome book. Not only will we store all our data on the cloud (music, photos, videos) we will also use the cloud for our daily computing needs. Given the high speeds of theNAN this should be quite feasible in the future. The cloud will remove our worries about virus attacks, patch updates and the need to buy new software.  We will also begin to trust our data in the cloud as we progress to the future. Moreover the pay-per-use will be very attractive to consumers.

Exploding Datacenters:  As mentioned above a serious drawback of the cloud is the WAN latency. It is quite likely that with the increases in processing powers and storage capacity coupled with dropping prices that cloud providers will have hundreds of data centers with around 1000 servers for each city rather than a few mega data centers with 10,000’s of servers.  These data centers will address the computing needs of a community in a small geographical area. Such smaller data centers, typically in a small city, will solve 2 problems. One it will build into the cloud geographical redundancy besides also providing excellent performance asNAN latencies will be significantly less in comparison to WAN latencies.

These technologies will improve significantly and fill in the need for handling neighborhood high speed data

The future definitely points to computing in the neighborhood.

Find me on Google+


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s